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since for x < 3/4 n each multiplier is positive, while for x > s/4 n with allowance for 
the increase of cs (x) we have 

For J # 0 and h > 0 Eq. (1.4) can have one stable stationary solution Q or two stable 
(with a considerable and a small 1 Q I) and one unstable. 
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The problem of determination of the shape of bodies that have solidified in a 
moving fluid, of heat exchange between these and the fluid is encountered in 
domains such as underground construction by freezing water-saturated rocks, heat 

*) V. A. Maksimov (1929- 1975), Dr. Tech. Sci. professor and author of about 40 works 
related to the theory of filtration and thermal conductivity, and of a textbook and a mono- 
graph. 
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exchange in underground liquefied gas reservoirs, heat exchangers with molten 

metals. etc. An approximate representation of external temperature fields is in- 

vestigated in the present work. This approximation is used for the formulation 
of fairly general methods for complting the shape of solid bodies formed during 

solidification of the stream liquid phase. 

1. Statement of the problem. The stationary problem of determination of 
the shape of ice-type solid bodies that build up around cooling devices in a stream of 
perfect fluid is considered. The problem of freezing rock formations under filtrationcon- 
ditions is identically stated. The solid bodies formed in this manner are called equipon- 

derant ; they satisfy the condition of continuity of the heat flux through the boundary. 

The relation between thermo- and hydrodynamics in the stream outside the body is 
important for the subsequent analysis. The thermal diffusivity equation in the moving 
fluid outside the body, after the Boussinesq transformation [l], is of the form 

a2 
( 

$$+g,+ (1.1) 

where a2 is the thermal diffusivity of the fluid, T (cp, 9) is the external temperature 

field, and x and cp are, respectively, the hydrodynamic stream function and the potential 
(v = grad cp is the velocity field). Terms in the left-hand part represent convective 
heat transfer along arid across the fluid streamlines, respectively, and the right-hand part 
defines the convective heat transfer along streamlines. 

It is clear that at high P&let numbers P = v,l/ a2 (v, and I are the characteristic 
stream velocity and dimension of the body) along streamlines the convective heat trans- 
fer predominates and it is possible to neglect in Eq.( 1.1) the term Tw . This was noted 
in [Z], where the scope of applicability of the abridged equation 

aa a2T --- 
w2- g 

(1.2) 

was partly investigated by comparing it with the analytical solution of complete equa- 
tion, which is known for the second boundary value problem. 

The problem of lengthwise flow past a semi-infinite plate at constant temperature, 
defined by Eq. (1.1) was solved analytically in [3]. An unexpected result of that com- 
parison was the exact agreement between the heat fluxes on the plate calculated by Eq. 

(1.1) and by the abridged equation (1.2) whose solution in this case is 

T (cp, q) = T, erf L 
2a V/(p (I. 3) 

(T, is the stream temperature away from the body, and the temperature of the body 
boundary is zero). This result justifies the use of the proposed method for flows past 
semi-infinite bodies (their boundary in coordinates cp, Q is the semiaxis Q = 0 and 

cp > 0). 
The applicability of (1.3) to finite bodies requires further investigation. This equation 

is also of interest for the determination of the region of the &&ma1 boundary layer, 
For this Eq.(l. 1) was solved numerically on a computer. In dimensionless coordinates 
@ = cp / L\cp, Y = Q / Aq, (where AT is the increment of cp between the stagnation 
points of the flow), the body boundary is represented on the o-axis by segment 0 < 
<D < 1. The dimensionless temperature u (CD, ‘P) is zero at the body boundary and 
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unity at infinity. The numerical solution was obtained for various numbers P- Atp/a2 
(we recall that Aq N 2&l). 

P=l /’ a 

~ 

// 
/ 

Fig. A 

F&sults of numerical solutions are shown in Fig. 1 by solid lines (isotherms u = 0.01 
and u = 0.1 are shown, respectively, in Fig, 1, a and 1, b). For comparison the related 

isotherms determined by the approximate solution (1.3) am shown by dash lines. It will 
be seen that for P > 50 the exact and the approximate solutions are virtually tbesame. 

Formula 

g(Q)= -+- ~~+J~~Y=*~@ (1.4) 
0 

where integration is carried out over the results of the numerical solution, represents the 
ratio of over-all heat fluxes to the body boundary obtained by the numerical solutionto 
that calculated by ( 1.3) between the leading stagnation point and current value of @. 

Curves g (Q) are represented in Fig. 2. These show that the total heat influx to thebudy 
can be calculated by the approximate solution already for P > 10 (with an error not 

exceeding %)). 

Fig. 2 

The problem of determ~g the shape of 
the body with the use of solution ( 1.3) is con- 
sidered below, 

2, The rhrpe of o ffnlts body, 
We denote by f the contour of the solid 
body and by rO that of the cooling equip- 
ment. Contours r,, and I’ are assumed 
to be symmetric about some straight line 
parallel to the flow of fluid, The physical 
plane z = x + iy is oriented so that the 
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0% -axis coincides with the above straight line and the coordinate origin is at the down- 
stream edge of the body (Fig. 3, a)* The complex flow potential w (2) = QP (z, y) $- 
iq (x, y) satisfies boundary conditions 

qr = 0, ZE r, -oO<X\(xA, o\(x<~ (2.1) 

dw 
-&-+vmt z-Foe; w(ZA) = 0 

(A is the leading stagnation point of the body and vm is the velocity of flow at infinity). 
The temperature distribution Tl (x, y) inside the body is defined by the real part of 

the complex heat potential w, (z), i.e. $?‘r = Re wl (2). 
Temperature readings are taken from the melting point, i.e. from the temperature at 

the body boundary 
RewI(z) =0, ZEI (2.2) 

Functions w (z) and w1 (z) and contour I’ are the unknowns. The condition of heat 
flux continuity at transition through the contour I? is of the form 

(2.3) 

where k and 4 are thermal conductivity of the fluid and solid phases, respectively, 
and n is a normal to I’. 

Taking into account (2.1) - (2.3),( 1.3), and that at the boundary T = T, = 0, we 
obtain [4, 51 

(2.4) 

We introduce the new complex variable 5 = vz / I, (where I, is a characteristic di- 
mension of contour r’,) and function 0 (Q = ih 1/w (henceforth 5 is taken in the 

a 

Fig. 3 
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upper half-plane, see Fig. 3, b). Function w (5) is analytic in the upper half-plane out- 
side the transformed contour I’, and ~0, (5) = w, IO (c)l is an analytic function in- 
side contour r and outside To. Conditions (2. l), (2.2) and (2.4) become 

ImN) =O, 5=07 7fz-P: 7)* =fjzApio (2.6) 

Re w, (5) = Re o (5) = 0, t;~r, q=O (2.3 

1 WI’ (Cl 1 = 1 co’ (5) I, s E I- (5 = E + irl) (2.8) 

Conditions (2.7) and (2.8) show that functions W, (5) and o (5) are analytic continu- 
ations of each other through contour I’. 

The problem has been thus reduced to the determination of a function that is analytic 
in the upper half-plane and outside I?a , and which satisfies conditions (2.5) and (2.7), 
and the boundary condition at the known transformed contour I’,, (condition (2.6) follows 
from the symmetry (of I’,) and is included for clarity). 

As an example, let us consider a solid body formed by the freezing of fluid around a 
circular bank of n u~formly spaced point cold sources of capacity Q each. The sources 

are located at points Zj on a circle of radius H,, and center at point (---I, 0) (see Fig. 

3, a). The conditions at the bank I’,, amount to that the function o (5) must have loga- 
rithmic singularities of the same capacity at points 51. 

In the considered case functions o (I;) can be treated on the basis of (2.5) - (2.7) as 
the complex potential of the fictitious stream which flows at velocity 2ri toward thesour- 
ces of capacity q, located at points &, along the imaginary axis. The real axis 8 must 
be an isoline of the zero potential he w = 0. 

The explicit expression for the potential is obtained by continuing the fiow into the 

lower half-plane and locating sources of opposite capacity - q at points G 

The potentials in the physical plane z are derived from this by formulas 

ws (2) = 0 (I/zlR,), 

So far these functions are not entirely determined, since the distance E which defines 
the position of the coordinate origin in the z-plane is not known. 

It is convenient to carry out further investigation in the E-plane. Formulation of the 

problem requires the contour I’ to be represented by a single closed curve that has a 
unique common point with the E-axis, namely 5 = 0. The condition that the curve 

which represents r must emanate from point 5 = 0, means that the equation Re o = 

0 must have at that point a root of higher than the first multiplicity. This requirement 
leads to the following formula: 

p= 27* Kj=sj+irlj) (2.10) 
3 

The barameter I is determined from this, if the formulas 
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which follow from (2.4), (2.5) and (2. 9) are taken into account. Equation for the solid 
body contour I? is determined by the condition Re o (z) = 0. Specific examples can 

be found in [6]. 
Substituting q /n for q and assuming R,, + 0, we obtain one source of capacity Q. 

The distance I from the source to the coordinate origin is [S] 

I= 
q2a2 

4nTLk%, 
(2.12) 

Note that in this problem the thermal conductivity of the body does not appear in the 
final formulas. This is as it should be in problems with sources,since the heat potential 

can be introduced for k,T, and not for T, . 
The considered method of problem solution is unsuitable for a multiply connected 

contour I?. However, in practice it is the determination of the order of connectedness 
of contour I? that is the most interesting. In some cases the linking of bodies formed 
around individual cold sources is the main requirement, while in others it is the avoid- 

ance of such linking. This problem can be readily investigated in the case of a small 
number of sources. 

Let us consider, as an example, two cold sources located on a line perpendicular to the 
stream (Fig. 3, c). Condition (2.10) is assumed to be satisfied, i.e. the branches of con- 
tour E originate at point 0. For small S the region of negative potentials contains in 
the g-plane both sources,and contour I? is represented by a single curve. With increasing 
b the division of T into two branches occurs at some instant. This means that in the 
neighborhood of point 6 = 0 the terms containing 52 and 5s in the expansion of o (5) 

must vanish. 
Computation in [6] yielded the limit value B * = 2”a*3*‘4, from which, with allowance 

for formula (2. ll), we obtain the following condition for simple-connectedness of con- 
tour l? 

There is no solution of the boundary value problem for a multiply-connected contour r. 
Because of this the approximate method [4] is used. It consists of substituting a suitable 
curve for the unknown contour I and satisfying the equality of heat fluxes in the mean. 

Let us find the result of the approximate solution in the case of a body solidified around 
a single point cold source . In [5] the shape of the body boundary was determined with 

observance of the strict condition (2.3). The length of the body was found to be equal 
1.44 l and its transverse dimension equal 1.04 &where I is calculated by formula 
(2.12). Assuming the contour of the body to be approximately a circle of radius R and 

using (2.4) we obtain 
4 =4T,k+ 

- _aVR 
where AJf/w is the increment of f/w between stagnation points. The flow is deter- 
mined by the Joukovski potential. As the result, for the radius of the body we obtain the 
formula 

R= rCq2aa 
64T;kzvoo 

Comparison with the exact solution, in which D = 1.24 1 is taken as the mean 
dimension of the body,yields the ratio 2RID = 0.995. 
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8. Solid bodiar formed on urni-infinite wail8 in l lengthwire 
:trrrm. Profile r,, of the cooling wall at temperature --T, is represented by two 
(generally nonsymmetric) branches of the curve, which are directed along,the positive 
x-axis. We assume that at infinity the transverse dimensions of contour l?a do not in- 
crease faster than j/T. As before, the hydrodynamic potential w (z) is chosen so that 

at the leading stagnation point A of contour I? of the solidified body WA = 0. Let the 
contour I?,, be mapped by function z = f (5) onto the upper half-plane of the variable 
I; = E + iv with the correspondence of infinitely distant points. On these assumptions 
about contour I’0 function f (Q is at infinity of order gs. For function w (5) = v/w 
and the heat potential wr (5) we have conditions (2.2) and (2.4), as well as the follow- 
ing condition : 

Imo([) =0, 5~ r; Re w1 = --To, q = 0 (3.1) 

The last condition assumes the form 

dw 20 dw 
dz= f’(5)-+%, 5-w (3.2) 

Let us prove that contour r is represented in the g-plane by the straight line 6 = 
E + ii/z parallel to the real axis, and function wr and w are of the form 

Wl i5) = -* (ic+vG), @a= *cc - w-3 (3.3) 

A direct test shows that conditions (2.2) , (2.4) and (3,3) are satisfied. Condition(3.2) 
can be satisfied sirrre 0 (5) is linear and f’ (5) is at infinity of order %. This condi- 

tion associates v a,, with v, and with parameters of transformation of f (t) , and we 
then obtain the equation of the contour in a parametric form. Thus for solving this 
problem it is sufficient to determine the function that maps the form of the known con- 
tour I‘a onto the upper half-plane. 

Let us consider some examples. Let r,, be the parabola ya = 4b (F_+ b) which is 
mapped onto the upper half- plane by function z = f (5). = (5 + iv 6)s. Substituting 
the expression for w (5) from (3.3) into (3. Z), we obtain for a, the formula 

nT2k2nz 
a, = 

01 (3.4) 
4TLk%, 

The contour r is also represented by a parabola 

Y2 = 4 WzJ + W2 [It: + (V/a, + VVI (3.5) 

which is confocal to ro. Thickness of the solidified body frontal part is a, f 2da,b. 

The particular case when To is a semi-infinite wall x > 0 obtains for b = 0. For- 
mula (3.4) for a,remains valid, and the potentials become 

w1= - * (if/z + J&-J, w = v, (J&i - i I/FiJa (3.6) 

Let us determine the heat influx Q (c) to the wall over the length z. Allowing for 
(3.4) and (3.6) we obtain 

Note that the above formula contains only parameters of external stream, which means 
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that for equal external conditions the heat exchange is the same for any body. The in- 
ternal parameters T, and krdetermine the size of such bodies. 

If the contour I’,, has the form of a half-band 2h wide (edges of the half-band are at 
points 2 = f ih) , then the mapping function is of the form 

~=f(~)=-i-$-(C1/1-~~ +arcsinc) 

Condition (3.2) implies that in this case 
~zT~ka~2 

a, = 01 

8T2,hk%, 

This dimensionless quantity determines the shape of contour I’, whose parametric 
equation is of the form 

s+iy= - i $ [(E - i y’Zo) jf1 - (E + i ‘c/aaf” + arc sin (E + i fG)l 

The thickness of the body at 5 = 0 is 

The proposed method can be found useful for determining the frontal and side parts 
of finite bodies, if the finite cooling equipment is extended downstream by, for example, 
a semi-infinite wall. Because of the physical aspects of the statement of the problem 
considered here, thermal perturbations from the body aft-part virtually do not extend 
upstream. Of course the aft-part affects the frontal one but that effect diminishes with 
increasing i&let number, 

Below we present the results of computations for a cooling pipe of radius R0 (other 
variants of solution are given in [4, 51). The contour I’, is assumed to be a circle of 
radius R, with its center at the coordinate origin and the emerging from it part of semi- 
axis x > 0, We have 

a0 = nToabeaa 1 (4T,aRoPv,) 

where d is the thickness of the body leading edge and Q is the thermal flux per unit 
length of the pipe, 

4. Three-dfmrnrfonrl axirymmetria problomo. There are noexact 
solutions for three-dimensional problems. However it can be expected on the basis of 
solutions of plane problems that with a successful selection of approximation of the un- 
known shape of the body and by satisfying the boundary condition in the mean, a result 
close to the true will be obtained. 

For an axisymmetric flow we shall use the following orthogonal curvilinear coordi- 
nates qir 9s andqs:ql= p! (% Y, z) which represents the flow potential (v = grad cp), 
9s = V (I, y, Z) which is the streamtinction such that the discharge through the ring 
layer is equal %nA$, and qs is a circular coordinate with respect to the coordinate axis 
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of symmetry. For the single velocity component Q, along the streamline we have [7] 

vul = 1 / HI = 1 I (H,H,), where H,, Hs and H, = p are Lami coefficients, with p 
denoting the distance from the axis of symmetry. In a stream of fluid the temperature 
diffusivity equation reduces to 

a2 g+&-(P2~)]+ [I (hlZPh2) (4.1) 

For high P&let numbers P we substitute in (4. 1) for function p2 (cp, 9) its value at the 

body boundary p2 (cp, 0) and, as previously,omit the term a2T / d@. 
For the considered problem the solution of the obtained equation is of the form 

cp 
rp 

T (q, 9) L- T, erf 
2 vrx ’ 

x (cp) = a2 
s P(cp,O)dT (4.2) 

‘PA 

Because of the known properties of solutions of Eq.(4.1) without the term d2T I 8cp2 
it is not unreasonable to expect that the substitution of p (cp, 0) for p (cp, Ip) will not re- 
sult in a very great difference in solutions. This assumption was tested in [8] whereexact 
solution of the complete equation (4.1) was obtained by numerical methods for the case 
of flow past a sphere for P = 180. The comparison of isolines and heat fluxes obtained 
by the exact numerical solution and by the approximate analytical solution (4.2) shows 
that these are virtually the same (within the accuracy of the numerical solution). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

REFERENCES 

Boussinesq, M. , Calcul du pouvoir refroidissant des courants fluids, J. Math., 
Vol. 1, N” 825, 1905. 

Grosh, R. J. and Cess, R. D. , Heat transfer to fluids with low Prandtl num- 
bers for flows across plates and cylinders of various cross section. Paper ASME, 

NF-29, 1957. 
Van Wijngaarden, L., Asymptotic solution of a diffusion problem with mixed 

boundary conditions, Proc. Koninkl. nederl. akad. wet. , Vol. 69, Nz 2, 1966. 

Proskuriakov, B. V. , Thermal calculation of a freezing bore in a filtrating 

soil. Izv. Vses. N. -i. Inst. Gidrotekh. , Vol. 45, 1961. 

Maksimov, V. A. , On the stable shape of bodies solidified around a cold source 

in a stream of fluid. Izv. Akad.Nauk SSSR, Mekhanika, N” 4, 1965. 
Maksimov, V. A. , The shape of joined ice-like bodies formed by a bank of 

freezing bores in underground water flow. 1n:Certain Problems of Rock Mecha- 

nics, Mask. Gom. Inst. , Moscow, 1968. 
Loitsianskii, L. G., Mechanics of Liquids and Gases. (English translation), 

Pergamon Press, Book N-” 10125, 1965. 
Maksimov, V. A. , Computation of the size of ice-rock body forming around 

an underground storage of liquefied gases in a stream of underground water. 
In: Problems of Rock Mechanics, “Nedra” , Moscow, 1971. 

Translated by J. J. D. 


